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Abstract
The most general conformally invariant bending energy of a closed four-
dimensional surface, polynomial in the extrinsic curvature and its derivatives,
is constructed. This invariance manifests itself as a set of constraints on the
corresponding stress tensor. If the topology is fixed, there are three independent
polynomial invariants: two of these are the straightforward quartic analogues of
the quadratic Willmore energy for a two-dimensional surface; one is intrinsic
(the Weyl invariant), the other extrinsic; the third invariant involves a sum of a
quadratic in gradients of the extrinsic curvature—which is not itself invariant—
and a quartic in the curvature. The four-dimensional energy quadratic in
extrinsic curvature plays a central role in this construction.

PACS numbers: 04.60.Ds, 87.16.Dg, 46.70.Hg, 02.40.Hw

1. Introduction

The bending energy of a two-dimensional surface, quadratic in its extrinsic curvature, is
invariant under scaling; size does not matter. What is less obvious is that this energy is also
invariant under transformations of the three-dimensional background which preserve angles;
it is conformally invariant. In particular, any two surface geometries related to each other
by inversion in a point have the same energy. This property was first studied systematically
by Willmore in the 1960s [1]. More recently, it was discovered to lie at the heart of some
fascinating connections between differential geometry and integrable systems [2]. In the
1970s it was recognized that the physics of a fluid membrane—formed by the spontaneous
aggregration of amphiphilic molecules into bilayers in water—is captured completely at
mesoscopic scales by geometrical degrees of freedom [3, 4]. On such scales the membrane
can be modelled as a two-dimensional surface; at lowest order, the principal cost in energy
is associated with bending this surface [5]. Remarkably, all of the molecular details get
telescoped into a single rigidity modulus. A role was also found for a relativistic counterpart
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in the 1980s: an addition quadratic in extrinsic curvature to the action of a relativistic string
accounts for the behaviour of colour flux tubes in QCD [6–8].

Higher-dimensional analogues of the two-dimensional bending energy are also of potential
interest both as statistical field theories and relativistically as braneworld actions. If the
surface dimension differs from two, however, the energy quadratic in extrinsic curvature
is no longer scale invariant, much less conformally invariant: a higher-dimensional sphere
without a constraint on its area will collapse; tension is necessarily introduced. Conformal
invariant energies, polynomial in the extrinsic curvature, are however simple to construct:
the building block is the traceless part of the extrinsic curvature tensor which transforms
by a multiplicative factor [1, 9]. In four dimensions, for a hypersurface of fixed topology,
there are two independent conformal invariant energies quartic in the extrinsic curvature.
The snag is that these invariants alone cannot accurately describe a conformally invariant
theory of bending. The reason is simple: when expanded as a power series in terms of a
height function, they begin with a term quartic in this function. Thus, they vanish in the
Gaussian approximation to the energy truncating it at the quadratic in the height function.
In particular, there is no harmonic regime to describe fluctuations about a flat geometry.
On dimensional grounds, the relevant invariant must involve curvature gradients. This
invariant will play a role in the formulation of a consistent statistical field theory of four-
dimensional hypersurfaces. Its identification, however, is somewhat less trivial than that of
its quartic counterparts. To do this, it will be useful to approach the problem from a global
point of view which focuses directly on the transformation properties of the surface energy
rather than the individual tensors which appear within it. For the sake of simplicity, we
will focus on a closed hypersurface of fixed topology; more simple still, think topological
4-sphere.

Consider any energy, constructed using the metric and the extrinsic curvature, which is
invariant under reparametrizations of the hypersurface and Euclidean motions of space. If the
theory is invariant under translations the response of this energy to an arbitrary infinitesimal
deformation of the hypersurface can be expressed in terms of a stress tensor [10, 11]. In [11]
it was shown that the tangential stress f ab has two contributions: one of these is the metric
stress tensor T ab which determines the response of the energy to changes in the intrinsic
geometry; the second, which determines the response to changes in the extrinsic geometry,
involves the functional derivative of the energy with respect to the extrinsic curvature, Hab.
One is interested, in particular, in determining the response of the energy to the deformation
of the hypersurface induced by an infinitesimal conformal transformation. It is possible to
characterize this response in a remarkably succinct way in terms of traces: that of f ab and that
of Hab. Conformal invariance will place constraints on these traces. In contrast to a conformal
invariant of the intrinsic geometry which has a representation with Hab = 0, these constraints
may be satisfied in a very subtle way by an invariant of the the extrinsic geometry.

The task is to identify energies that are consistent with these constraints. While the
focus will be on closed four-dimensional hypersurfaces, the techniques developed will be
independent of the dimension. We first briefly describe the construction, within this framework,
of the two well-known four-dimensional conformally invariant energies quartic in extrinsic
curvature. Modulo the Gauss–Codazzi equations, which identify the intrinsic Riemann tensor
with a quadratic in the extrinsic curvature, one of these invariants is the Weyl invariant
associated with the intrinsic geometry of the hypersurface, and thus insensitive to the particular
way the hypersurface is embedded. The third invariant involves a balance of a part quadratic
in curvature gradients with a quartic in curvature; neither term on its own is conformally
invariant. We show how this constraint can be satisfied by tuning the quartic so that the two
trace terms cancel. Intriguingly, this cancellation involves properties of the four-dimensional
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Willmore energy quadratic in the extrinsic curvature (which is not itself a conformal invariant
in this dimension) in an essential way.

2. Linear response, the Euler–Lagrange derivative as a divergence, and the stress

Consider a closed D-dimensional hypersurface embedded in RD+1. This hypersurface is
described locally by the embedding, x = X(ξa). Here x = (x1, . . . , xD+1) and ξa, a =
1, . . . , D parametrize the hypersurface. The metric tensor and extrinsic curvature induced
by X are respectively gab = ea · eb and Kab = ea · ∂bn, where ea = ∂aX, a = 1, . . . , D are
tangent and n is the unit normal. The Gauss–Weingarten equations are ∇aeb = −Kabn and
∂an = Ka

beb [12]. ∇a is the covariant derivative compatible with gab; spatial indices get
raised with the inverse metric gab. We are interested in functionals of X which are invariant
under reparametrizations of the hypersurface.

The metric and extrinsic curvature are both invariant under the change in X induced by
a Euclidean motion in RD+1: a Euclidean invariant energy H [X] can therefore be cast as a
functional of the metric, the extrinsic curvature and its derivatives,

H [X] =
∫

dAH(gab,Kab,∇aKbc, . . .). (1)

The area element induced on the hypersurface is dA = √
det gabd

Dξ . We wish, in particular,
to construct an energy which is invariant under deformations induced by a conformal change
of the Euclidean background:

δx = a + Bx + λx + x2c − 2(c · x)x, (2)

where a and c are two constant vectors (c has dimensions of inverse length), B is an anti-
symmetric (D + 1) × (D + 1) matrix, and λ is a positive constant. δx is the sum of an
infinitesimal Euclidean motion, a change of scale and a special conformal transformation.
The latter exponentiates to the composition of an inversion x → x/x2, a translation through
the vector c, and another inversion, x → (x + x2c)/(1 + 2c · x + c2x2). Both gab and Kab

are invariants under Euclidean motions: as a result, any energy of the form (1) will also be
by construction. What one now needs to do is characterize the constraints placed on H by
invariance under scaling and special conformal transformations.

It is useful to first determine the linear response of H to any small deformation of the
hypersurface. This task is simplified by exploiting invariance under Euclidean motions of the
ambient space. While Noether’s theorem informs us that the Euler–Lagrange derivative can
always be cast as the divergence of a stress tensor, in all but the simplest case—an energy
proportional to the area functional describing surface tension—the identification of this tensor
is subtle: unlike the stress associated with area, the stress will depend not only on the intrinsic
geometry but also on how the hypersurface bends. The tug on the hypersurface will possess a
normal component.

A small deformation of the hypersurface is described by the infinitesimal change in the
embedding functions X

X → X + δX. (3)

Note the following points:

(1) As a consquence of the reparametrization invariance of H in a closed geometry, the
response of H is independent of the tangential projection of δX; thus

δH =
∫

dA En · δX (4)
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involves only the normal projection. The Euler–Lagrange derivative of H with respect to
X is denoted by En.

(2) The translational invariance of H implies that its Euler–Lagrange derivative is a divergence
[10, 11]

En = ∇afa. (5)

The hypersurface current fa · a is associated with the invariance of H under a translation
δX = a. When the Euler–Lagrange equation E = 0 is satisfied, this current is conserved.
The closure of the geometry then permits δH to be recast in the remarkably simple form

δH = −
∫

dA fa · ∇aδX. (6)

This expression involves one less derivative than equation (4). Note that one does not need
to know how fa itself transforms. Equation (6) is valid whether or not the Euler–Lagrange
equation is satisfied. This equation will be used to examine the response of H to the
deformation in the hypersurface induced by conformal transformations of space.

3. The stress

The stress fa associated with H is given by

fa = (
T ab − HacKc

b
)
eb − ∇bHabn, (7)

where Hab is the functional derivative of H with respect to Kab,

Hab = ∂H
∂Kab

− ∇c

(
∂H

∂∇cKab

)
+ · · · (8)

and T ab = −(2/
√

g)δH/δgab is the intrinsic stress tensor associated with the metric gab.
This construction involves treating gab and Kab as independent variables in H; to do this
consistently requires one to introduce a set of auxiliary variables to constrain gab and Kab

to satisfy the Gauss–Weingarten structural relationships. The ellipsis appearing on the rhs
of equation (8) indicates terms which appear if H depends on derivatives of Kab higher than
first. A simple derivation of equation (7) is provided in [11]. We note, in particular, that fa

decomposes into tangential and normal parts

fa = f abeb + f an. (9)

This decomposition has the following properties which are relevant:

(1) The tangential projections of equation (5) provide a consistency condition on the
components of the stress

∇af
ab + Kabfa = 0; (10)

the normal component determines E :

E = ∇af
a − Kabf

ab. (11)

(2) The normal stress f a is always a divergence.
(3) Even though bothHab and T ab are symmetric tensors, f ab will not generally be symmetric.

On one hand, as equation (11) indicates clearly, only the symmetric part of f ab contributes
to the Euler–Lagrange derivative. An anti-symmetric contribution, if present, will however
show up in the consistency conditions (10) and so cannot be discarded naively.

Let us now consider specific forms for the function H appearing in equation (1) which
will be used in the construction of conformal invariants.
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3.1. H(gab,Kab)

Suppose that H does not involve derivatives of Kab: H = H(gab,Kab). Then

Hab = ∂H/∂Kab, (12)

and it is simple to show that

T ab = 2HacKc
b − Hgab, (13)

so that

fa = (HacKc
b − Hgab)eb − ∇bHabn. (14)

Hab is a symmetric polynomial in Kab. Thus f ab is a symmetric tensor. A straightforward
calculation gives

E = −∇a∇bHab − KacK
c
bHab + HK, (15)

where K = gabKab is the trace of Kab (D times the mean curvature).
In particular, for the Canham–Helfrich or Willmore energy, one has

H0 = 1

2

∫
dAK2, (16)

H = K2/2 and Hab = Kgab, so that

fa = K
(
Kab − 1

2gabK
)
eb − ∇aKn, (17)

and [1] (see also [13])

E = −∇2K + 1
2K(K2 − 2KabKab). (18)

If K = 0, then E = 0. The relationship between E and fa for H0 will play a role in the
construction of a higher-derivative conformal invariant of a four-dimensional hypersurface.

Note that it is unnecessary to admit an explicit intrinsic curvature dependence in H. This
is because the Gauss–Codazzi equations [12]

Rabcd = KacKbd − KadKbc (19)

completely fix the Riemann tensor, as well as its contractions, the Ricci tensor Rab =
gcdRacbd and the scalar curvature R = gabRab, in terms of the extrinsic curvature1.
However, if one is interested explicitly in a functional of the intrinsic geometry, H =
H(gab,Rabcd ,∇eRabcd , . . .), it may then be more appropriate to treat these tensors as
functionals of gab alone, and ignore the integrability conditions (19). If this is done, Hab = 0
and T ab is the stress tensor of the (purely) metric theory defined by H. Now, f ab = T ab and it
is manifestly symmetric; furthermore f a = 0.2 The Euler–Lagrange derivative is then simply
E = −KabT

ab; the consistency condition then reads ∇aT
ab = 0—the metric stress tensor is

conserved. Clearly, it does not matter how one decides to split the burden on gab and Kab,
so long as it is done consistently when performing the variations in the derivation of fa . As
discussed in detail elsewhere, if fa is treated as a differential form, the difference between its
values in the two representations is an exact form.

1 The Riemann tensor is defined intrinsically by the failure of the ∇a to commute: for a space vector Va , we have the
Ricci identity (∇a∇b − ∇b∇a)Vc = Rabc

dVd .
2 Intrinsically defined invariants are not the only ones possessing this property. One can show that the geometrical
invariants constructed out of the symmetric polynomials in the curvature, PN(σ1, . . . , σD), N � D, where {σi} are
the principal curvatures, do also. For example, when N = 1, P1 = K and f ab = Kab − gabK , which is conserved,
so that f a = 0.
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3.2. H(gab,Kab,∇cKab)

If one extends the class of functionals to include a dependence on ∇cKab, there are few useful
general statements concerning the structure of fa . Our limited goal, however, is to identify
conformal invariants of closed hypersurfaces so we do not need to consider the most general
form.

Consider candidate polynomials in ∇aKbc and Kab that are consistent with scale
invariance. When D = 2, there are none. When D = 3, there is a Chern–Simons type
topological energy; it vanishes on a closed geometry. When D = 4, the quadratics in
∇cKab are scale invariant. As shown in [14], however, any quadratic in derivatives of Kab is
expressible, modulo a divergence, as a sum of the simple invariant

H1 = 1

2

∫
dA(∇K)2 (20)

and an integral over some quartic in Kab. The latter is of the form, H(gab,Kab), already
considered in section 3.1. So H1 is the only invariant that needs to be considered.

The demonstration of this claim involves the Codazzi–Mainardi integrability conditions

∇aKbc − ∇bKac = 0, (21)

as well as the Ricci identity applied to Kab

[∇a,∇b]Kcd = Rabc
f Kf d + Rabd

f Kcf . (22)

Consider the energy constructed using the quadratic ∇aKbc∇aKbc. One first uses equation (21)
followed by an integration by parts to obtain∫

dA(∇aKbc)(∇aKbc) =
∫

dA(∇aKbc)(∇bKac) = −
∫

dAKb
c∇a∇bK

ac. (23)

One then makes use of equation (22) to switch derivatives so that∫
dA(∇aKbc)(∇aKbc) = −

∫
dA

(
Kc

b∇b∇aK
ac − RabcdK

acKbd + RabK
acKc

b
)
. (24)

The contracted Codazzi–Mainardi equations, ∇aK
ab − ∇bK = 0, and another integration by

parts are applied to the first term to nudge it into the required form:∫
dAKc

b∇b∇aK
ac = −

∫
dA∇bK

b
c∇aK

ac = −
∫

dA∇cK∇cK. (25)

One concludes that∫
dA(∇aKbc)(∇aKbc) =

∫
dA(∇cK∇cK + RabcdK

acKbd − RabK
acKc

b)

=
∫

dA(∇cK∇cK + (tr K2)2 − K tr K3). (26)

The notation tr Kn = Ka1
a2 · · · Kan

a1 has been introduced. On the second line, the Gauss–
Codazzi equations (19) have been used to eliminate the Riemann tensor in favour of a quadratic
in extrinsic curvature. The energy H1, given by equation (20), is reproduced modulo a quartic
in extrinsic curvature.

Note that for H1 one has (this is true for any dimension D)

Hab = −∇c(g
ab∇cK) = −gab∇2K (27)

and

T ab = ∇aK∇bK − 1
2gab(∇K)2 − 2Kab∇2K. (28)
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The second derivative term originates in the variation of ∇aK with respect to gab. The
correponding stress tensor is [15]

fa = [∇aK∇bK − 1
2gab(∇K)2 − Kab∇2K

]
eb + ∇a∇2Kn. (29)

Again f ab is symmetric3. In this case, it is simple to check that

E = [∇2 + tr K2]∇2K − Kab
[∇aK∇bK − 1

2gab(∇K)2
]
. (30)

Note that if K = 0, then E = 0 so that minimal hypersurfaces also minimize H1.

4. Scaling

It is trivial to identify energies which are scale invariant. However, the imprint of scale
invariance on the stress tensor is subtle and it will be relevant to our interpretation of the
response, under special conformal transformations, of the energy in terms of the stress
tensor.

Consider an energy with a fixed scaling dimension. Under a change of scale X → �X,
where � is a positive constant, one has

H [�X] = �D+dH [X] (31)

for some d, or alternatively, in terms of the corresponding density, H[�X] = �dH[X]. H is
scale invariant when d = −D.

Consider now an infinitesimal change of scale, � = 1 + λ; at first order in λ,
equation (31) gives

δλH = (D + d)λH. (32)

On the other hand, the first order variation equation (6) with the substitution δX = λX
expresses δλH in terms of the trace of the tangential stress,

δλH = −λ

∫
dAf a

a, (33)

where f a
a = gabf

ab. Comparison of equation (32) with equation (33) furnishes an identity,

(D + d)H = −
∫

dAf a
a. (34)

Only the trace of the tangential stress tensor contributes to the change of H under scaling.
Locally, this implies that

f a
a = −(D + d)H + ∇aG

a, (35)

where Ga is a hypersurface vector field. Modulo a divergence, the trace is proportional to the
integrand.

For functionals of the form H(gab,Kab) one can show that Ga = 0.4 In particular, a scale
invariant functional of this form has vanishing tangential trace: f a

a = 0. This is not true

3 Evidently, one has to proceed to a relatively high order energy to produce an f ab which is not symmetric: for
H = Kab∇aK∇bK,Hab does not commute with Kab and thus f ab is not symmetric.
4 To see this, consider the response to a deformation of H on a region with boundary: For functionals of the form
H(gab, Kab), equation (6) is replaced by

δH = −
∫

dA fa · ∇aδX +
∫

dA ∇a[Habeb · δn]. (36)

In particular, under a change of scale, δn = 0 and equation (36) reproduces equation (33) without any boundary term.
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of higher derivative scale invariants: equation (34) does, however, imply that the trace is the
divergence of a hypersurface vector field:

f a
a = ∇aG

a. (37)

In particular, in the case of the functional H1 defined by equation (20), inspection of
equation (29) gives for the trace of fab,

f a
a = 4 − D

2
(∇K)2 − ∇2K2/2. (38)

One identifies Ga = −∇aK2/2.

5. Special conformal transformations

Infinitesimally, a special conformal transformation induces a change in X given by

δcX = X2c − 2(c · X)X. (39)

The corresponding response of the energy is determined using equation (6):

δcH = −
∫

dA fa · ∇aδcX = −
∫

dA[f ab(eb · ∇aδX) + f a(n · ∇aδX)]

= 2
∫

dA
[
f a

a(c · X) − f ac · f0a

]
+ 2

∫
dAf ab [(ea · c)(eb · X) − (a ↔ b)], (40)

where

fa
0 = (ea · X)n − (n · X)ea. (41)

The identities

ea · ∇bδcX = 2 [(ea · c)(eb · X) − (a ↔ b)] − 2(c · X)gab (42)

and

n · ∇aδcX = 2 [(ea · X)(c · n) − (ea · c)(X · n)] = 2c · f0a (43)

have been used on the second line of equation (40). In the case of the energies we will consider
f ab is symmetric so that the term appearing on the last line in equation (40) vanishes. The
equation thus simplifies to

δcH = 2
∫

dA
[
f a

a(c · X) − f ac · f0a

]
. (44)

Further simplification is possible using the structure of fa . Using the fact that f a = −∇bHab,
where Hab is given by equation (8), the second term appearing on the rhs of equation (44) can
be cast as ∫

dAf ac · f0a =
∫

dAHabc · ∇bf0a. (45)

However, the definition of fa
0 (41) gives

∇bf0a = gabn + Kb
c((X · ea)ec − (a ↔ c)). (46)

The tangential projection is anti-symmetric in a and b and so does not contribute to the rhs of
equation (45) if f ab = T ab −HacKc

b is symmetric. Even when it is not, it cancels against an
identical term appearing on the last line in equation (40). It then follows that:

δcH = 2
∫

dA
[
f a

a(c · X) − Ha
a(c · n)

]
, (47)
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where Ha
a = gabHab. The response of H to an infinitesinal special conformal transformation

has been expressed as a difference of two terms. Each of these terms involves a trace. Note
that in the case of any intrinsic geometrical invariant, there exists a representation in which
the second term vanishes.

The energy H is conformally invariant if and only if equations (37) and

f a
a(c · X) − Ha

a(c · n) = ∇ah
a (48)

are satisfied. ha is a hypersurface vector field.
We now construct a four-dimensional energy, polynomial in the curvature and its

derivatives, that is consistent with these constraints.

6. Conformally invariants polynomial in Kab

A scale invariant energy with a density H depending on gab and Kab but not on their derivatives
has traceless f ab: f a

a = 0. To be invariant under special conformal transformations, one also
requires that ∫

dAHa
an = 0. (49)

This is clearly satisfied if Hab is also traceless: Ha
a = 0. It is straightforward to construct

polynomial functionals with this property. These are the well-known invariants involving the
traceless part of the extrinsic curvature tensor K̃ab

(
K̃a

a = 0
)

K̃ab = Kab − K

D
gab. (50)

LetH be a product of termsHn, each of which is a trace over a product of n K̃abs (see definition
below equation (26)); Hn = tr K̃n. Note that

�ab
cd := ∂K̃ab

∂Kcd

= 1

2

(
δa

cδb
d + δa

dδb
c
) − 1

D
gabg

cd (51)

projects out the trace
(
�ab

cdgcd = 0
)
. For each factor Hn, we thus find that

gab

∂Hn

∂Kab

= 0. (52)

Consequently, Ha
a = 0 [1] (see also [16]). Two-dimensional surfaces are considered in an

appendix.
In four dimensions, there are two polynomial conformal invariants constructed this way

corresponding to the two independent quartics tr K̃4 and (tr K̃2)2. One linear combination of
the two is the Weyl invariant of the intrinsic geometry [17].

It is possible to satisfy equation (49) in a rather less trivial way. It was seen that the
translation invariance of any functional of the form (1) implies the identity equation (5)
between its Euler–Lagrange derivative and the hypersurface divergence of a stress tensor. If
this identity is integrated over a closed hypersurface it follows immediately that the Euler–
Lagrange derivative satisfies∫

dA En = 0. (53)

Thus, if it is possible to cast Ha
a as the Euler–Lagrange derivative of some translationally

invariant functional of the form (1), then equation (49) will be satisfied. However, one can
show that the only energy densities constructed using Kab consistent with this condition are
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proportional to a sum of the symmetric polynomials in the principal curvatures. Consistency
with scale invariance leaves only the determinant. Thus the only conformal invariant generated
this way is the Gauss–Bonnet topological invariant [12].

Note that the Paneitz invariant, which has been the centre of recent research, is the
difference between the Gauss–Bonnet and the Weyl invariants [18, 19]. As such, it is an
invariant of the intrinsic geometry.

7. Conformal invariant quadratic in gradients of Kab

In four dimensions, the functional H1 defined by equation (20) is scale invariant but it is not
conformally invariant. It is possible, however, to construct a conformal invariant by adding to
H1 the integral of an appropriate quartic in Kab. One way to identify this quartic is as follows:

(i) First determine how H1 transforms:

for H1, neither f a
a nor Ha

a vanishes; one must contend with the two terms appearing in
equation (47). For H1, equation (38) gives f a

a = −∇2K2/2. On performing two integrations
by parts and using the Gauss–Weingarten equations, one finds that∫

dAf a
a(c · X) = 1

2

∫
dAK3(c · n). (54)

In addition, using Hab = −gab∇2K ,∫
dAHa

a(c · n) = −4
∫

dA∇2K(n · c). (55)

The identities (54) and (55) are now substituted into equation (47) to give for δcH1:

δcH1 =
∫

dA(K3 + 8∇2K)(n · c). (56)

(ii) Next note that the rhs of equation (56) can be simplified by using an identity associated
with the quadratic energy H0 defined by equation (16). Using equation (18), equation (5)
implies that ∫

dA

[
∇2K +

(
tr K2 − 1

2
K2

)
K

]
(n · c) = 0, (57)

for any c. This identity allows δcH1 given by equation (56) to be expresssed in terms of a
cubic polynomial in Kab:

δcH1 = −8
∫

dA

(
tr K2 − 5

8
K2

)
K(n · c). (58)

Now let H2 = (∇K)2/2 + H′ where H′ is quartic in Kab. If

gab

∂H′

∂Kab

= 8

(
tr K2 − 5

8
K2

)
K, (59)

then H = ∫
dAH will be conformally invariant. The choice of H′ is clearly not unique,

however, it is modulo a linear combination of the two conformally covariant quartics, tr K̃4

and (tr K̃2)2. The simplest choice is a linear combination of the two invariants, K4 and
K2 tr K2. A short calculation gives

H′ = K2 tr K2 − 7
16K4 (60)

and one identified the following four-dimensional conformally invariant energy:

H2 = 1

2

∫
dA

(
(∇K)2 − 7

8
K4 + 2K2 tr K2

)
. (61)
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This identification appears to be new. Unlike the two quartic conformal invariants in four
dimensions, the conformal invariance of H2 involves a delicate balance between gradients and
quartics.

With our choice of quartic H′,H2 is not positive, unlike the invariants constructed using
tr K̃4 and (tr K̃2)2, which are. It is, however, possible to form a positive conformally invariant
gradient energy by adding an appropriate linear combination of the other invariants. The most
general four-dimensional conformally invariant energy polynomial in the extrinsic curvature
will involve a linear combination of all three invariants.

Note that a physically realistic four-dimensional generalization of the Willmore energy
will involve H2. Consider the Monge description of the hypersurface in terms of a height
function h above a reference plane. With respect to Cartesian coordinates on this plane, the
extrinsic curvature tensor takes the form

Kab = − ∇a∇bh

(1 + (∇h)2)1/2
, (62)

where now ∇a is the flat derivative on this plane. To lowest order in h,Kab ≈ −∇a∇bh +O(h3).
In the Gaussian approximation, quadratic in h, all quartics in Kab vanish; in particular, the
conformal invariants constructed using tr K̃4 and (tr K̃2)2 both vanish. For H2 given by
equation (61) only the gradient term survives and one is left with

H2 = 1

2

∫
dA⊥(∇�h)2 + O(h4), (63)

where dA⊥ is the area element and � is the flat Laplacian on this plane. The conformal
invariance of H2 is, of course, necessarily mutilated in the approximation process.

8. Generalization

The construction of the invariant in section 7 suggests that it may be useful to substitute
equation (37) for f a

a into equation (47). If f a
a is the Laplacian of some scalar, f a

a = ∇2G,
then one can perform two integrations by parts to re-express∫

dAf a
a(c · X) = −

∫
dAGK(c · n). (64)

It is now possible to peel off the space vector in equation (47) so that equation (48) is replaced
by (

GK − Ha
a

)
n = ∇aFa. (65)

A sufficient condition for conformal invariance is that f a
a = ∇2G, and GK −Ha

a is a Euler–
Lagrange derivative. Fa is the corresponding stress tensor. This is clearly not the only way
that conformal invariants arise. In fact, if the energy depends only on the intrinsic geometry,
then Hab vanishes and there are no solutions of this form. An interesting exercise would be to
identify other energies with an f a

a which is the Laplacian of a scalar.

9. Discussions

In the statistical field theory of surfaces, conformally invariant Hamiltonians provide fixed
points of the renormalization group flow. While the theory of two-dimensional surfaces is
well understood [3], next to nothing is known about possible four-dimensional counterparts.
The identification of the appropriate invariants is a small first step towards the formulation of
such a theory. Before plunging into statistical field theory, however, there are questions of an
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elementary nature that should be addressed. What are the minima of the conformally invariant
energy? Even without constraints, highly non-trivial vacua appear to be admitted. Is there
a useful analogue of Willmore’s conjecture [1]? The classification of solutions will involve
topological selection rules beyond the scope of this paper. It would also be interesting to know
if four-dimensional analogues of Goetz and Helfrich’s egg carton geometries exist [20].

In the same way that the two-dimensional Willmore functional finds an application in
relativistic field theory with the replacement of a Euclidean signature metric by a Lorentzian
one, it is possible that the four-dimensional conformally invariant bending energy will find
a role in braneworld cosmology [22]. In this context, the generalization of the conformally
invariant energy (61) to accommodate a curved bulk should be straightforward.

Finally, it should be noted that our construction has been framed in the language of classical
differential geometry. Its translation into the language of Cartan’s exterior differential systems
should be straightforward but useful, especially for addressing issues of a topological nature
[23] (see also [24]).
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Appendix. Two-dimensional surfaces

When D = 2, the only polynomial in K̃ab, with scaling dimension d = −2 and vanishing
Ha

a is tr K̃2 = K̃abK̃ab. The corresponding energy is the Willmore energy.
The Gauss–Bonnet topological invariant,∫

dA det Ka
b (A.1)

is, of course, also a conformal invariant. For a two-dimensional surface det Ka
b = R/2. In

fact, any quadratic invariant in extrinsic curvature is trivially also conformally invariant. This
is because any scalar in the extrinsic curvature can be expressed as a linear combination of
tr K̃2 = tr K2 − K2/D and R = K2 − tr K2, both of which give rise to conformal invariants
when D = 2. Thus, in particular, the two quadratics in Kab,K

2 and tr K2 also provide
conformal invariants. This fact can be phrased in an alternative way. We note that both
H = K2 and H = tr K2 have Ha

a ∝ K so that equation (49) is satisfied.
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